Spectroscopic and Microscopic Characterization of Contaminant Uptake and Retention by Carbonates in Soils and Vadose Zone Sediments
نویسنده
چکیده
Historical releases and subsequent migration of toxic metals and radionuclides within the soil and vadose zone at various sites over the DOE Complex pose serious technological challenges, including the design and implementation of cost-effective remediation and/or monitoring strategies. This requires knowledge of the fundamental processes that govern contaminant mobility and reactivity with their host materials. The main research objective of this project is to assess the effectiveness of uptake and retention of selected contaminants (Co, Cs, Pb, Sr, U, and Cr) on calcium carbonate (primarily calcite), with a focus on conditions and sorbent materials relevant to the Hanford Site. This includes detailed microscopic and spectroscopic characterization of carbonate coatings and caliche from the Hanford Site, combined with experimental determination of the uptake behavior of selected contaminants on calcite surfaces and consideration of factors influencing uptake behavior and retention. The methodology relies on spectroscopic, microscopic, mineralogical, and geochemical characterization of natural and analog materials, including spatially resolved X-ray fluorescence (microXRF) and X-ray absorption fine-structure (XAFS) spectroscopy of uptake products. A primary goal is to determine the reaction mechanisms that govern contaminant uptake by carbonates. The expected results will have direct application for assessing the role that calcium carbonate phases play in sequestering toxic metals and radionuclides at the Hanford Site and other locations with calcium carbonate, and will also serve as a baseline for similar studies in more complex systems.
منابع مشابه
Risk assessment of industrial hydrocarbon release and transport in the vadose zone as it travels to groundwater table: A case study
In this paper, a modeling tool for risk assessment analysis of the movement of hydrocarbon contaminants in the vadose zone and mass flux of contamination release into the groundwater table was developed. Also, advection-diffusion-reaction equations in combination with a three-phase equilibrium state between trapped air, soil humidity, and solid particles of unsaturated soil matrix were numerica...
متن کاملContaminant bioavailability in soils, sediments, and aquatic environments.
The aqueous concentrations of heavy metals in soils, sediments, and aquatic environments frequently are controlled by the dissolution and precipitation of discrete mineral phases. Contaminant uptake by organisms as well as contaminant transport in natural systems typically occurs through the solution phase. Thus, the thermodynamic solubility of contaminant-containing minerals in these environme...
متن کاملColloid-facilitated Transport of Radionuclides through the Vadose Zone
Research Objectives: This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of Cs in the vadose zone. The specific objectives are: • Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring during leakage of waste typical of Hanford tank supernatants into soils a...
متن کاملColloid Genesis / Transport and Flow Pathway Alterations Resulting From Interactions of Reactive Waste Solutions and Hanford Vadose Zone Sediments
The Hanford Site was one of the DOE’s major nuclear weapons production sites from 1940 to 1989. Over time, 67 of the 149 single-shell tanks have leaked or are suspected of having leaked [1]. Contaminants such as Tc and U have been found in elevated concentrations in the vadose zone and groundwater beneath the single shell tank farms [2]. In order to make decisions on remedial actions, numerous ...
متن کاملSpectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site.
Uranium (U) solid-state speciation in vadose zone sediments collected beneath the former North Process Pond (NPP) in the 300 Area of the Hanford site (Washington) was investigated using multi-scale techniques. In 30 day batch experiments, only a small fraction of total U (approximately 7.4%) was released to artificial groundwater solutions equilibrated with 1% pCO2. Synchrotron-based micro-X-ra...
متن کامل